Math 10A with Professor Stankova
Quiz 15; Wednesday, 12/6/2017
Section \#107; Time: 11 AM
GSI name: Roy Zhao
Name:

Circle True or False or leave blank. (1 point for correct answer, -1 for incorrect answer, 0 if left blank)

1. TRUE False The vertical line test tests whether a curve in the plane is the graph of a function.

Solution: The vertical line test makes sure there is at most one output to each input.
2. TRUE False While a limit $\lim _{x \rightarrow c} f(x)$ does not care what happens exactly at $x=c$ because the limit is concerned only with the behavior of $f(x)$ nearby $x=c$, continuity does care about both and wants them to coincide.

Solution: Limits only care about what happens near $x=c$ and continuity means that the two are equal.

Show your work and justify your answers. Please circle or box your final answer.
3. True FALSE If a function is not differentiable at $x=c$, then it cannot be continuous there either.

Solution: A function can be continuous but not differentiable.
4. TRUE False $\sqrt{3}$ can be approximated by using Taylor Polynomials and by Newton's method; however, different functions are needed in each approach.

Solution: We use the function \sqrt{x} for Taylor Polynomials and $x^{2}-3$ for Newton's method.
5. TRUE False Riemann sums are somewhat cumbersome tools for finding approximations of areas, yet they are absolutely necessary to link antiderivatives to areas.
6. True FALSE To calculate the definite integral $\int_{-5}^{5} \sqrt{25-x^{2}} d x$, we must find an antiderivative of $\sqrt{25-x^{2}}$ and use the FTC I to evaluate it at the ends of the interval $[-5,5]$.

Solution: We can use the area under the curve definition.
7. True FALSE $(\ln |x|)^{\prime}=1 /|x|$ for all $x \neq 0$.

Solution: The derivative is $1 / x$.
8. True FALSE We can show that $\int_{5}^{\infty} \frac{1}{x^{1.01}} d x$ converges in at least three ways: by a brute force calculation using the definition of an improper integral, by representing $\int_{5}^{\infty} \frac{1}{x^{1.01}} d x$ as part of $\int_{1}^{\infty} \frac{1}{x^{1.01}} d x$ and then using a formula from class for the value of the latter integral, or by comparing it with the more familiar to us integral $\int_{5}^{\infty} \frac{1}{x^{1}} d x$.

Solution: We cannot compare it to $\int_{5}^{\infty} 1 / x d x$ because that diverges.
9. True FALSE For a symmetric distribution centered at 0 , we do not have to calculate σ because it will always be 0 or not well-defined.

Solution: The standard deviation will very much not be 0 ! And also, it may not be defined.
10. True FALSE Normal distributions are defined only for positive X; yet, when converted to the standard normal distribution, they may be defined for negative X too.

Solution: Normal distributions are defined for all X.
11. True FALSE $P(A \cup B)=P(A)+P(B)$ as long as A and B are independent events in different outcome spaces.

Solution: Addition holds if A and B are non-overlapping.
12. True FALSE For any RV's X and Y, it is true that $E(5 X-7 Y)=5 E(X)-7 E(Y)$ and $E(X Y)=E(X) E(Y)$.

Solution: The first statement is true but the latter only holds for independent X, Y.

